Quantifying Aircraft Black Carbon Emissions

M.E.J. Stettler¹, J.J. Swanson¹, A. Petzold², S.R.H. Barrett³ and A.M. Boies¹

¹Department of Engineering, University of Cambridge ²Forschungszentrum Jülich, Institute of Energy and Climate Research ³Department of Aeronautics and Astronautics, Massachusetts Institute of Technology

Cambridge Particle Meeting 24th May 2013

Outline

- Context
- Experimental study
 - Aerosol characterisation
 - Effect of particle size and measurement variability on correlation between mass concentration and SN
- Global aircraft BC emissions
- Conclusions

Outline

<u>Context</u>

- Experimental study
 - Aerosol characterisation
 - Effect of particle size and measurement variability on correlation between mass concentration and SN
- Global aircraft BC emissions
- Conclusions

Motivation

- Aircraft gas turbine engines emit PM
 - Focus on non-volatile <u>black carbon</u> (BC) mass
- Climate impacts (direct and in-direct) and health impacts
- Limited measurement data
- Engine lifetimes of ~decades, new regulations (SAE E-31) unlikely to be applied to engines currently in service

Aircraft Smoke Number

• Regulation introduced in 1981 to reduce plume visibility

Boeing 707, circa 1960

Aircraft Smoke Number

 No engines since 1990 have exceeded regulatory limit

Boeing 787, circa 2011

SN measurement

11

SN measurement

SN to BC mass concentration

- Several studies have correlated SN to BC mass concentration ($C_{\rm BC}$)

Champagne, D.L., 1971. ASME paper 71-GT-88. Girling, S.P., Hurley, C.D., Mitchell, J.P., Nichols, A.L., 1990. Aerosol Science and Technology 13, 8–19. Wayson, R., Fleming, G., Iovinelli, R., 2009. Journal of the Air & Waste Management Association 59, 91–100. Whyte, R.B., 1982. Alternative Jet Fuels. AGARD Advisory Report No. 181, Vol. 2.

SN to BC mass concentration

- Several studies have correlated SN to BC mass concentration ($C_{\rm BC}$)

Champagne, D.L., 1971. ASME paper 71-GT-88. Girling, S.P., Hurley, C.D., Mitchell, J.P., Nichols, A.L., 1990. Aerosol Science and Technology 13, 8–19. Wayson, R., Fleming, G., Iovinelli, R., 2009. Journal of the Air & Waste Management Association 59, 91–100. Whyte, R.B., 1982. Alternative Jet Fuels. AGARD Advisory Report No. 181, Vol. 2.

SN to estimate aircraft BC emissions

- First Order Approximation v3 method (FOA3)
- Developed in International Civil Aviation Organization CAEP meetings
- Estimate BC emissions during landing and take-off

ICAO, 2011. Airport Air Quality Guidance Manual. Wayson, R. et al. (2009). *J Air & Waste Management Association, 59*(1), 91–100.

Validation of existing SN- C_{BC} correlation

Measured EI(BC) (mg/kg-fuel)

(i) Particle size distribution

- Empirical correlation between SN- C_{BC} derived for soot with GMD = 80-100 nm (Girling et al., 1990)
- Inconsistent with aircraft measurements (GMD = 20-40 nm)

Source: Girling, S. P., et al. (1990).

Champagne, D.L., 1971. ASME paper 71-GT-88. Girling, S.P., Hurley, C.D., Mitchell, J.P., Nichols, A.L., 1990. Aerosol Science and Technology 13, 8–19. Wayson, R., Fleming, G., Iovinelli, R., 2009. Journal of the Air & Waste Management Association 59, 91–100. Whyte, R.B., 1982. Alternative Jet Fuels. AGARD Advisory Report No. 181, Vol. 2.

17

(ii) SN measurement variability

(ii) Filter diameter variability

Outline

- Context
- Experimental study
 - Aerosol characterisation
 - Effect of particle size and measurement variability on correlation between mass concentration and SN
- Global aircraft BC emissions
- Conclusions

BC source

26

Particle size distributions

Morphology

- BC aggregates:
 - Open structure
 - Spherical
- Primary particle size <20 nm

Morphology

Sorensen, C.M., 2011. Aerosol Science and Technology 45, 765–779.

BC mass concentration

$$\left(C_{\mathrm{BC},\rho_{\mathrm{eff}}} = \int_{0}^{\infty} n(d_m) m_p(d_m) \,\mathrm{d}d_m\right)$$

• Estimate mass concentration

- particle number distribution: $n(d_m)$
- particle mass: $m_p(d_m)$
- ±10% error when compared to gravimetric analysis

Outline

- Context
- Experimental study
 - Aerosol characterisation
 - <u>Effect of particle size and measurement variability on</u> <u>correlation between mass concentration and SN</u>
- Global aircraft BC emissions
- Conclusions

16 GMD=60nm • Correlation between SN and $C_{\rm BC}$ GMD=30nm Δ 14 • Impacts of: GMD=20nm 0 • Filter diameter $GMD=20-30nm (R^2=0.92)$ 12 GMD=60nm (R²=0.95) • 19 mm (open) • 35 mm (filled) ----- FOA3 10 • Particle size distribution $C_{BC} \, (mg/m^3)$ • GMD = 60 nm • Matches FOA3 correlation 8 • FD not significant 6 4 2 25 10 15 20 30 0 5 SN

- Correlation between SN and $C_{\rm BC}$ • Impacts of:
 - Filter diameter
 - -liter diameter
 - 19 mm (open)
 - 35 mm (filled)
 - Particle size distribution
- GMD = 60 nm
 - Matches FOA3 correlation
 - FD not significant
- GMD = 30 nm
 - Greater $C_{\rm BC}$ for a given SN
 - Less mass collected for 19 mm FD

- Correlation between SN and $C_{\rm BC}$
 - Impacts of: • Filter diame
 - Filter diameter
 - •19 mm (open)
 - 35 mm (filled)
 - Particle size distribution
- GMD = 60 nm
 - Matches FOA3 correlation
 - FD not significant
- GMD = 30 nm
 - $\bullet\, \text{Greater}\,\, \mathcal{C}_{\text{BC}}$ for a given SN
 - Less mass collected for 19 mm FD
- GMD = 20 nm
 - Similar to 30 nm
 - FD not significant

• Combine data for 20 and 30 nm GMD to represent aircraft BC

 $C_{\rm BC} \left[\frac{{\rm mg}}{{\rm m}^3} \right] = 0.236 ({\rm SN})^{1.126}$

- ±25% uncertainty bound captures >95% of the data
- Predicted $C_{\rm BC}$ factor 3 greater and FOA3
- Suggests that the current correlation underestimates aircraft BC emissions

Validation of new SN- C_{BC} correlation

Validation of new SN- C_{BC} correlation

UNIVERSITY OF CAMBRIDGE

Outline

- Context
- Experimental study
 - Aerosol characterisation
 - Effect of particle size and measurement variability on correlation between mass concentration and SN
- <u>Global aircraft BC emissions</u>
- Conclusions

Validate estimated EI(BC)

- Measurements of aircraft EI(BC) from:
 - APEX 1-3 (Timko et al, 2010)
 - Delta-ATL (Lobo et al., 2008)
 - Agrawal et al. (2008)
 - SAMPLE III (Crayford et al., 2012)
- Data for 13 engine models
- Use certification SN to estimate EI(BC)

Agrawal, H. et al., 2008. Atmospheric Environment 42, 4380–4392. Crayford, A. et al., 2012. Studying, sAmpling and Measuring of aircraft Particulate Emissions III - SAMPLE III. Lobo, P. et al., 2008. Delta - Atlanta Hartsfield (UNA-UNA) Study. Timko, M.T. et al., 2010. Journal of Engineering for Gas Turbines and Power 132, 061505.

41

Validate estimated EI(BC)

- Current ICAO estimates are low
 - Greater than ×10 in 40% of cases
 - $R^2 = -0.10$
 - Consistent underestimation
 - Zero SN, non-zero EI(BC)

Validate estimated EI(BC)

- Current ICAO estimates are low
- New SN- C_{BC} improves but still inaccurate

• $R^2 = 0.35$

- Remaining questions on reliability of certification SN
 - Engine degradation (?)
 - Sample line loss

Remaining uncertainties

Estimating EI(BC) without SN - FOX

- Based on Arrhenius model for soot formation and oxidation
- Empirical use measurements to calibrate
- More accurate estimates of EI(BC) at ground and cruise altitude

Estimating EI(BC) without SN

Measured EI(BC) (mg/kg-fuel)

EI(BC) at cruise

- FOX estimates agree within measurement error
- SULFUR 1-7 measurements
 - Cited as typical emissions values
 - Conducted at low airspeed
 - Low aircraft weight
 - \rightarrow Low engine thrust setting (~20%)

SULFUR 1-7 (Schumann et al., 2002)

Schumann, U. et al. (2002) JGR 107 (D15). doi:10.1029/2001JD000813

EI(BC) depends on engine thrust setting

• Ground level measurements indicate that EI(BC) increases with engine thrust setting

Global aircraft BC emissions

- ~2.5 higher than current best estimate used in climate impact evaluation
- Updated aviation direct BC RF is ~1/3 that of CO_2 (linear scaling)

Summary

- SN reduced plume visibility
- Experiments to test SN- $C_{\rm BC}$ correlation
 - Controllable BC generation
 - Existing correlation underestimates by ×2.5 for 'aircraftsized' BC particles
- Remaining SN uncertainty
 - Line losses
 - Probe design
 - Engine degradation

Summary

- Empirical BC emissions model independent of SN developed
- Updated estimate of global aircraft BC emissions
 ~2.5 higher than previous estimates
 - Direct BC RF is ~1/3 that of CO_2
 - Greater importance of measures to reduce BC emissions
 - Need more measurements at cruise

Acknowledgements

- Funding from EPSRC
- Cambustion Ltd. for loan of CPMA
- Cardiff University for loan of filter holders
- APEX 1-3 data: Aerodyne, MS&T
- SAMPLE III data: Cardiff University, Rolls Royce plc.

Thank you, questions?

ms828@cam.ac.uk

Effective density

- <u>Filtration efficiency is strongly</u> <u>dependent on particle mobility</u> <u>diameter</u>
- Significant difference for different filter diameters (FD)
- For FD = 19 mm
 - Minimum filtration
 - 40%
 - <30nm
- For FD = 35 mm
 - Minimum filtration
 - 40%
 - 40-60 nm

- Filtration efficiency is strongly dependent on particle mobility diameter
- Significant difference for different filter diameters (FD)
- For FD = 19 mm
 - Minimum filtration
 - 40%
 - <30nm
- For FD = 35 mm
 - Minimum filtration
 - 40%
 - 40-60 nm
- <u>Mass distributions indicate less</u> mass collected for smaller GMD

Global aircraft BC emissions

Global aircraft BC emissions

Döpelheuer, A., & Lecht, M. (1998). *RTO AVT Symposium on Gas Turbine Engine Combustion Emissions and Alternative Fuels* (p. RTO MP–14). Lisbon, Portugal.

Outcomes – Airport air quality

Validation of cruise EI(BC) estimates

• SULFUR 1-7 measurements

Schumann et al. (2002)

Aircraft	A310-300	B737-300	A340
Engine	CF6-80C2A2	CFM56-3B1	CFM56-5C4
<i>ṁ_f /ṁ_{f,max} (</i> %)	18.6	22.5	20.0
Measured EI(BC) (g/kg-fuel)	0.019 ± 0.01	0.011 ± 0.005	0.010 ± 0.003
Estimated EI(BC) FOX (g/kg-fuel)	0.017	0.015	0.011

Schumann, U. et al. (2002) JGR 107 (D15). doi:10.1029/2001JD000813

Engine thrust setting at cruise

• Real flight data from Flight Data Recorder

EI(BC) depends on engine thrust setting

Motivation

- Aircraft gas turbine engines emit PM
 - Non-volatile <u>black carbon</u> (BC)
 - Semi-volatile organic material and sulphates
- Degrade of air quality and contribute to radiative forcing
- Current SN regulation concerned with plume visibility
- Limited data on aircraft BC mass emissions
- Engines lifetimes of ~decades and new non-volatile particle number, size and mass (SAE E-31) standards unlikely to be applied to engines currently in service

SN to BC mass concentration

 Correlation is inconsistent with measured aircraft PSDs (GMD = 20-40 nm)

APEX 1-3

Source: Kinsey, J. S. et al., 2010. *Atmospheric Environment, 44*(17), 2147-2156.

SN to BC mass concentration

 Correlation is inconsistent with measured aircraft PSDs (GMD = 20-40 nm)

SN changes over time

 Estimate <u>BC emissions index</u> (mass per unit of fuel burned) from the SN

$EI(BC) = C_{BC}(SN) \times Q$

 Estimate <u>BC emissions index</u> (mass per unit of fuel burned) from the SN

 Estimate <u>BC emissions index</u> (mass per unit of fuel burned) from the SN

$EI(BC) = C_{BC}(SN) \times Q$

 Estimate <u>BC emissions index</u> (mass per unit of fuel burned) from the SN

$EI(BC) = C_{BC}(SN) \times Q$

SN to BC emissions index

• **<u>BC emissions index</u>**: mass per unit of fuel burned

Burner Setting	Collected mass (mg)	C _{BC,grav} (µg/m³)	C _{BC,peff} (µg/m³)	C _{BC,grav} /C _{BC,peff}
GMD=60nm	0.41-0.43	161-167	174-184	0.90-0.93
	(±0.02)	(±8)	(±15)	
GMD=20nm	0.31-0.66	123-128	125-140	0.91-0.98
	(±0.02)	(±8)	(±16)	

(ii) SN measurement variability

(ii) SN measurement variability

SN to estimate aircraft BC emissions

- First Order Approximation v3 method (FOA3)
- Developed in International Civil Aviation Organization CAEP meetings
- Estimate BC emissions during landing and take-off

ICAO, 2011. Airport Air Quality Guidance Manual. Wayson, R. et al. (2009). *J Air & Waste Management Association, 59*(1), 91–100. Yim, S.H.L. et al. (2013). Atmospheric Environment 67, 184–192.